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Abstract. The MFRG method is used to study the critical behaviour of the semi-infinite 
three-dimensional q-state Potts model. Estimates of Ac,  the critical enhancement at the 
special transition, and the phase diagram are obtained for different values of q and compared 
with results from other techniques. 

Surface effects in phase transitions have received a great deal of attention in the past 
few years (see [ 11 for a review). The critical behaviour of the semi-infinite k ing  model 
seems to be reasonably well understood and so are models with a continuous symmetry 
(see [2] for a recent study). The q-state Potts model is an interesting generalisation 
of the Ising ( q  = 2) case which deserves special attention since it has some new features, 
namely the alteration of the order of the phase transition for q = q , ( d ) .  This offers 
the possibility for a semi-infinite system to have a continuous surface transition whereas 
the bulk (ordinary) transition is discontinuous [3]. This expectation appears to have 
been confirmed experimentally [4]. 

In the present work we use the MFRG technique to obtain the phase diagram of 
the Potts ferromagnet in a simple cubic lattice with a free surface, generalising our 
recent study [ 5 ]  on the semi-infinite Ising ferromagnet. 

Two clusters, I and 11, with respectively 2 and 4 spins are considered (figure 1); 
we write their Hamiltonians: 

and 

%,, = - f (J,P:P,k+ JB(P:P:+ P:P," + P , " P f ) )  - h , ( n :  + n:) - h 3 ( n ; +  T: )  (16) 

(where P k  is the projector onto the kth Potts state, nk = P k  - l / q ) .  h l ,  h i ,  h , ,  h3 are 
effective fields representing the interaction of spins in a cluster with their neighbours 
outside the cluster. Near the surface transition line we let hi = 4J:C:, hS(=SJLCL) = 0, 

k = l  
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Figure 1. Clusters I and 11. J : ( J , )  (broken lines), J L ( J , )  (full  lines). 

h ,  = 3J,C, and h,( =4JBCB) = 0 and assume that C: and C, scale like the corresponding 
surface magnetisations 

where ( T ; ) ,  ($ (T ;  + T:) , , )  denotes the average surface magnetisation in cluster I (11). 
Linearising with respect to effective fields C, and C:, equation (2) leads, after some 
lengthy algebra, to the recursion relation 

K,[4 eXp( K s +  ~ K B )  + 6( 4 -2) eXp(2K~)  + 12( 4 - 1) eXp(K, + KB) 

+2(q -2)(q2-3q + 3 ) + 6 ( q  -2)2 eXp(K,) 

+ 4 ( q - l ) ( q - 2 )  exp(KJ1 
x 

+ (4  - 1 ) (qz  - 3q +3)  + 3(q - 1 ) (q  - 2, exp( K B )  

K,+3 KB) + 3(q - 1 )[exp(2KB) exp( K S  + KB)]  

+ (q - 1 ) (  q - 2) exp( K J } - '  = : K :  (3) 

with K ,  = J,/KT, KB= J B / K T  The surface transition line is obtained from the fixed 
point equation (derived from (3) with K ,  = K : ,  KB = K L ) .  

To calculate the bulk critical temperature we consider clusters I and I 1  away from 
the surface with J B  = J,, JL = J : ,  hi = h;  = SJLCL, h ,  = h,  = ~ J B C B  and proceed as 
above, with CB and Ck replacing C, and C [  and the bulk magnetisation in the place 
of the surface magnetisation. One gets, in this case 

K B { ~  eXp(4K~) +[12(q -2)  +8(2q -3)] eXp(2K~)+2(q  -2)(q2 -4q +6)  

+ [S(q -2) (  4 -3) + 4(q -2121 exp( KB)} 
X [ eXp(4K~)  +6(q - 1) e X p ( 2 K ~ ) +  (4 - l ) (q2-3q 1-3) 

+4(q -2)(q - 1) e x p ( K d - '  

= ;KL[2 exp(KL) + q -2][exp( K k )  + q - 13-' (4) 
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where K is the non-trivial fixed point solution of (4) .  If in (3) we write K ,  = K,(  1 + A ) ,  
and set KB = K c ,  we obtain Ac,  the critical enhancement at  the special transition. 

Phase diagrams obtained from (3) and ( 4 )  are represented in figure 2 for some 
values of q. Expressions (2)-(4) implicitly assume continuous transitions. However, 
though the MFRG technique was originally designed for second-order phase transitions 
and  is not able to answer questions about the order of the transition, it still gives a 
reliable prediction for the transition temperature in situations where the transition is 
known to be first order [6-81. We therefore expect the overall behaviour depicted in 
figure 2 to be correct, namely in the cases q = 3 and  q = 4 where one expects a continuous 
surface transition and  a weakly first-order bulk transition. In table 1 we show some 
values of Ac as well as the corresponding exponent 4 which measures the curvature 
of the surface transition line at Ac: (TJA) - Tc)/  Tc-  ( A - A C p d  when A+A:. 
Whenever the surface transition is second order, 4 describes the crossover from 
multicritical behaviour at A = Ac to two-dimensional critical behaviour. 

Table 1. 

1 0.73 0.81 
2 0.64 0.83 
3 0.59 0.84 
4 0.55 0.845 

Our results are in qualitative agreement with Tsallis and Sarmento [9] who looked 
at the same system using M K R G  in a hierarchical lattice. Their technique enabled them 
to study RG fixed points and flows but is not capable of tracing first-order transitions 
either. Our method is a lot simpler to apply, through more limited in scope, and  it 
gives a better prediction for A c ( q  = 2 )  as compared to Monte Carlo [ 101 (we are not 
aware of MC or other numerical studies for general 4 ) .  When q + 0 our  results are not 
consistent with Ac - q - ” 2  predicted by Tsallis and Sarmento. 
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Figure 2. Phase diagram for q = 1, 2, 3, 4, 6. 
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